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A brief review of the stability of linear systems acted upon by potential and g~qxncopic forces is given. Some assertions on 
the stability of these systems are proved using Lyapunov's direct method. In particular, the necessary and sufficient 
conditions of stability for the systems investigated previously in [1, 2] are obtained. © 1997 Elsevier Science Ltd. All fights 
reserved. 

1 .  The equations of the perturbed motion of a linear mechanical system acted upon by potential and 
gyroscopic forces can be reduced to the form 

/i+ Gq +/¢q = 0 (1.1) 

Here q is an n-dimensional vector and G r = -G, K T = K are constant matrices representing the 
gyroscopic and potential forces, respectively. We will assume that the matrix K is negative-definite. It 
follows from the Thomson-Tait-Chetayev result (see, for example, [3, 4]) that for odd n system (1.1) 
is unstable, while for even n it can be stable (i.e. gyroscopic stabilization is possible). 

The following problem therefore arises, which is of practical importance: in the case of even n, it is 
required to determine the nature of the stability of system (1.1) with respect to the coefficients of the 
acting forces. 

We will recall so)me of the few results obtained in this area. 
1. If 4 K -  G 2 < 0, the system will be unstable [5] (see also [6, 7]). 
2. 2 If K G  = GK,  the  system is stable if and only i f 4 K -  G > 0 [8]. 
Note that the condition for the matrices K and G to be commutative is extremely limiting. For example 

if n = 2, we have K = ¢d, where cx is a scalar and I is the identity matrix. 
Using Lyapunos's function in the form of a quadratic integral of system (1.1) several results have 

been obtained [1, 9-11] that are intimately related to the proof of necessity and sufficiency, obtained 
by Lyapunov, of the condition for the existence of a positive-definite quadratic integral for the stability 
of system (1.1) (see also [12]). 

When G = VG0, det Go # 0, an estimate of the parameter y, sufficient for gyroscopic stabilization to 
occur, was obtained in [9]. 

The following as~rtion gives a more accurate estimate. 
3. If ~ > 4k+/g ,  where k+(g_) is the maximum (minimum) eigenvalue of the matrix-K(G~), the system 

is stable [10]. 
4. If (x ~ R exists; such tha t /CI(K-  ol) > O and K -  (x/+ ceG ( K -  cx/)qG > 0 ( I -  cx/Q > 0 and 4K 

(I - o~) -1 - G ( I -  oA') -1 G < 0, the system is stable (unstable) [11]. 
Note that the last assertion on instability generalizes result I and is identical with it when cc = 0. 
5. Suppose the n~atrix K is diagonal and suppose D is a certain diagonal positive-definite matrix. If 

D commutes with O and K -  D - G 2 + G ( I  - DK) -1 G > 0, the system is stable [1]. 
It is important to note that the use of criteria 4 and 5 requires an investigation of the parameter (x 

and the matrix D, respectively. 

Fairly simple stability criteria were proposed [13, 2]. Their proof uses the following assertion: system (1.1) is 
stable when the roots of the characteristic equation are pure imaginary. Unlike a potential system, for system (1.1) 
this assertion is incorrect, as is indicated by the example of a system with two degrees of freedom 

tPrik£ Mat Mekh. Vol. 61, No. 3, pp. 385-389, 1997. 

371 



372 R . M .  Bulatovi~ 

/1,210 o l lq - I  1 lOIq=O 

In this example the quadratic elementary dividers correspond to the roots of the characteristic equation 
~.1~ = i, 7%,4 = -4, and consequently the system is unstable. 

In the following section we will use Lyapunov's direct method to obtain some results on the stability 
of system (1.1). 

2. The following lemma, the proof of which can be found in [14], will be necessary later. 

Lemma. For the quadratic form 

• = x r A x + 2 x r B y + y r C y ,  A t = A ,  C r = C ,  x, y e R "  (2.1) 

to be positive-definite it is necessary and sufficient that the matricesA and C-BTA-1B should be positive- 
definite. I fA > 0 and C - BrA'IB >t O, the form of (2.1) is positive semi-definite. 

Theorem 1. If 

2K - G 2 - 2k+/> 0 (2.2) 

where k+ is the maximum eigenvalue of the matrix -K, system (1.1) is stable. 

This theorem is analogous to the criterion proposed previously in [13]. We will compare them using the following 
example It3] 

/]+4] 0 011q+l k'-7 0 
k2_7[q =0, ki <7 

It follows fi'om Theorem 1, that this system is stable if 7 > ki > 3, while the criterion in [1] imposes the more 
rigid condition: 7 > ki > 5. 

Proof of  Theorem 1. System (1.1), as we know from [9], in addition to the energy integral 2 / / =  
qrq + q rKq  ' also admits of the integral 

F = (Gil + Kq)r(Gil + Kq)+ i]rKil 

We will take as Lyapunov's function the bunch of these integrals V = F -  2kj- / ,  which can be written 
in the form 

V=il(K-2G2-k+l)il+ F 

F- l'To2q-2qrGKq+qr(K 2 k+K)q 
- - 2q  

(2.3) 

Suppose condition (2.2) is satisfied. Since G 2 < 0 and K 2 + k+K ~< 0, by virtue of  the lemma the 
quadratic form F is positive semi-definite and, consequently, since (q = 0, F -- 0) = (0, 0), the function 
(2.3) is positive,definite. 

Hence, when condition (2.2) is satisfied the function V satisfied Lyapunov's theorem on stability, from 
which the assertion of  Theorem I also follows. 

Note 1. The condition of Theorem 1 is necessarily satisfied if criterion 3 holds. 
Note 2. It can be shown that the conditions for the bunch of integrals V = F -  20//, ct ¢ R to be positive-definite 

are equivalent to the conditions of stability of criterion 4, proved using a different form of Lyapunov's function. 

Henceforth we will confine ourselves to considering classes of systems (1.1) for which 

det G ~ O, KG 2 = G2K, KGKG -l = G-IKGK • (2.4) 
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For example, systems (1.1) with two degrees of f~cedom satisfy conditions (2.4). 
System (1.1), (2..4) admit of the quadratic integral [15] 

V = q r ( K  + G 2 - G-IKG)Kq + 4qrKGi l+  q r ( K _  G 2 _ GKG-I ) i  1 (2.5) 

By virtue of the lemma, the form (2.5) is positive-definite if and only if the f o l l o w i n g  t w o  conditions 
are satisfied 

L K >  0 

M = L - 2G 2 + 4GKL-IG > 0 (L = L r = K + G 2 - GKG -I) 

(2.6) 

(Z7) 

We will analyse conditions (2.6) and (2.7). The first of these is equivalent to the condition L < 0, 
since L K  -- KL anti K < 0. Since det G # 0, condition (2.7) is equivalent to the condition G r M G  > 0, 
which can be represented as 

GrMG = (L 2 - 4G2K) L-IG 2 = (L - 2N) (L + 2N) L-IG 2 > 0 (2.8) 

where N = (G2K) 1/z is a positive-definite quadratic root of the positive-defmite matrix G2K. It is obvious 
that the conditions~ L < 0 and (2.8) can only be satisfied simultaneously i fL + 2N < 0, i.e. the latter 
is the necessary and sufficient condition for integral (2.6) to be positive-definite, Consequently, by virtue 
of Lyapunov's theorem on stability we have the following theorem. 

Theorem 2. If the matrix 

K + G 2 - GKG -! + 2(G2K) J~ (2.9) 

is negative-definite, system (1.1), (2.4) is stable. 
Consider system (1.1) for which 

! 0 ° 0 j 
G =  _ M  r , K = -  k21 ; k l , k 2 = c o n s t > O  (2.10) 

where I is the identity matrix and M is a non-degenerate m × m matrix, 2m = n. Systems of this form 
were investigated previously in [2], where the condition 4K-G 2 > 0was proposed as the stability criterion. 

It can be veritiexl that the matrices (2.10) satisfy conditions (2.4) and, consequently, Theorem 2 is 
appficable. We can conclude fi'om the fact that the matrix (2.9) is negative-definite, taking into account 
the structure of the matrices G and K, that 

MM r - 2 ~ I  ( M M r )  ~ + (k I - k2) l  > 0 

M r M  - 2~-2 (MrM))6 + ( k  2 - k I ) />  0 

The last conditions can be reduced to the single condition 

(2.11) 

Consequently, condition (2.11) is sufficient for system (1.1), (2.10) to be stable. It turns out that (2.11) 
is also the necessat2.¢ condition for stability. 

In fact, since MM r i~ a symmetric positive-definite matrix, an orthogonal matrix U exists such that U yMMrU = 
diag(tt 2 . . . . .  ~t2). Converting system (1.1), (2.10) by maklng the replacement 

0 X 

and eliminatingy, we obtain 

x (iv) + (UrMMTU _ (k I + k2 ) I)~ + klk 2 Ix = 0 (2.12) 
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We will assume that the matrix A is not positive-definite. Then, as an i E [1 . . . . .  m] exists such that [ I~ I - 
(~/(kl) + ~/(k2)) ~ 0. With this condition, as can be shown, by investigating the corresponding equation of system 
(2.12) 

X~ IV) +(It 2 -(k I +k2))J~ i +klk2X i = 0 

the coordinate xi is unstable. 

Thus we have proved the following theorem. 

Theorem 3. System (1.1), (2.10) is stable if and only if the matrix A is positive-definite. 
We will now investigate the stability of system (1.1) when 

G = l _ 0  N N I, K=-diag(k,,  .... kn) (2.13) 

N=diag(vi), vi~O, i = l  . . . . .  m, k j > O ,  j = l  . . . . .  n. n = 2 m  

A single criterion of stability was established in [1] for this system. It turned out that the problem of 
the stability of system (1.1), (2.13) can be completely solved. 

We will introduce the following notation: ] N I = diag([ vi [ , . . . ,  ] vm [), D1 = diag(kx, • • •, kin), 
D 2 = diag (k in+l , . . . ,  k , ) .  We can prove the following theorem in the same way as Theorem 3. 

Theorem 4. System (1.1), (2.13) is stable if and only if the matrix I N I - + D2 v2) is positive- 
definite. 

Note that the well-known condition for gyroscopic stabilization of system (1.1) with two degrees of 
freedom follows from Theorem 3 and also from Theorem 4 (see, for example, [3]): I g I > ~/(kl) + ~/(k2), 
where g, kl and k2 are the elements of the matrices G and -K. Hence, we can conclude that Theorems 
3 and 4 are an extension of this condition to the case when n > 2. 

In conclusion we will prove a criterion for the instability of system (1.1), (2.4) without additional 
assumptions regarding the structure of the matrices G and K. 

Theorem 5. If 

G 2 + 4 (KGKG-I  )F2 > 0 (2.14) 

system (1.1), (2.4) is unstable. 

Proof. Consider the alternating-sign function 

V = 2qT(KG - GK)q  - qT(G2 + 4GKG -I )il (2.15) 

The total derivative of function (2.15) with respect to time, by virtue of system (1.1), (2.4), has the 
form 

~' = -~1T ( G + 4GKG -I  )el - (IT G( 4 E + G 2 )q + t i  r ( G 2 + 4GKG -| )Kq (2.16) 

2 2 From conditions ~2.4), taking into account the fact that the condition (3 K = KG is equivalent to 
~l 1 2 1 2 1 the condition G K G "  = G -  KG,  we can conclude that the matrices (G + 4GKG- ) and (G + 4GKG- ) 

are symmetrical. Since (G 2 + 4GKG -1 < 0), then, by virtue of the lemma, the form of  (2.16) is positive- 
definite if and only if 

16 KGKG -m - G 4 = ( 4( K G K G  -| Y~ - GZ X 4( K G K G  " ))~ + G 2) > 0 

Hence, when condition (2.14) is satisfied the function (2.16) satisfies the first Lyapunov theorem on 
instability, from which Theorem 5 also follows. 

Note 3. It follows from the fact that the matrix is negative-definite that condition (2.14) is satisfied. When KG 
GK the inverse assertion does not hold. 
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